
Routing and Provisioning VPNs based on Hose
Traffic Models and/or Constraints.

Gustavo de Veciana , Sangkyu Park, Aimin Sang and Steven Weber

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712�
gustavo � @ece.utexas.edu

Abstract

In this paper we investigate various questions associated with routing and provision-
ing virtual private networks (VPNs) based on hose traffic models or constraints, i.e., using
aggregate (hose) traffic characterizations in/out of VPN end-points. This appears to be a
promising simple approach to dealing with traffic engineering for VPNs. We evaluate the
possible efficiencies derived from spatial multiplexing, i.e., over possibly varying routings
of traffic loads consistent with hose specifications, and temporal multiplexing, i.e., statisti-
cal multiplexing of bursty loads, on shared VPN resources. We explore how these impact
VPN routing and provisioning to meet ‘coarse grained QoS targets’ and how routing a
sequence of VPNs on a shared network might be done to extend the ‘life-time’ of these
decisions (i.e., so as to avoid re-routing) as the number of, and demands on, VPNs grow.
Finally we discuss some natural extensions of the hose service model, specifically, the in-
clusion of multiple classes and cutset constraints, and how application layer multicasting
mechanisms might balance loads over a VPN’s hoses.

1 Introduction

The focus of this paper is on using ‘hose models’ as a means to describe traffic demands on a
virtual private network (VPN) and how traffic engineering, i.e., routing and provisioning might
be carried out in this context. By hose model, we refer to characterizations of the aggregate
traffic in/out of a VPN’s end-points versus using a full origin-destination traffic matrix. This
reduction in the required amount of information introduces uncertainty on what are the precise
traffic loads on the network, which for some cases may make traffic engineering inefficient,
while for others, may enable higher efficiency and robustness to changing loads.

The ‘hose model’ was first introduced in the context of VPNs by [1], wherein four advan-
tages were discussed: ease of specification, flexibility, multiplexing gain and characterization.
Let us briefly summarize the arguments made therein. First, such a traffic characterization
is simpler, in that one need only specify aggregates at ingress/egress points versus explicitly
determining the demands between all origin destination pairs. This not only provides the cus-
tomer with a natural service model but significantly reduces the amount of data required – data
which in many cases one may be unable to measure/characterize reliably. Secondly, provision-
ing based on hose models/constraints enables some flexibility in that the actual traffic demands
offered to the network may vary as long as they are consistent with the hose characterization.
That is to say, specifying traffic based on the hose model, and in turn dimensioning resources
to meet these demands, facilitates dimensioning resources over a set of possible traffic matri-
ces. Given the dynamic characteristics of traffic, one may indeed wish to allocate resources

so that a set of possible traffic loads (matrices) can be supported. Unfortunately this flexibility
may come at a resource cost. The third observation is that provisioning resources based on
hose specifications may allow additional multiplexing at the access points as well as within the
network– this may alleviate the resource cost of the flexibility mentioned above. Finally, due
to the smoothing resulting from aggregation at VPN endpoint’s hoses, characterization of the
traffic may be facilitated.

Routing structures for VPNs. This initial work, and subsequent research, e.g., [2, 3], have
significantly advanced our understanding of hose based VPN routing and provisioning, as well
as the associated restoration problem [4]. As first discussed in [1] one might consider routing
VPN traffic in several ways:

Pipe Model: a single route is determined (based on shortest path or other criteria) between
each pair of points.

Ingress (Egress) Tree Model: each ingress (or egress) of the VPN has a tree associated with
it that carries traffic to (from) all egress (ingress) points. The tree might be routed based
on shortest paths, or some other VPN or endpoint dependent metric. A VPN with n end
points would be served by n possibly overlapping trees.

Shared Tree Model: traffic between VPN end points is routed along a common tree. Various
criteria might be used to route such trees, e.g., minimize the overall provisioning cost,
use Steiner tree based on an appropriate link metric, or attempt to minimize congestion
on the network.

Mesh: an arbitrary routing of traffic, allowing the possibility of splitting traffic flows (e.g., for
load balancing) among paths connecting VPN end points. If no splitting is permitted, a
mesh reduces to a collection of individual pipes.

Depending on the routing structure, VPN dependent routing state may need to be maintained
in the network, otherwise traffic would follow paths determined by the associated IP (or other
standard) routing protocol. Indeed, explicit routing would be required to support routing struc-
tures specifically engineered for a given VPN. This can be achieved via source routing or by
setting up and maintaining VPN dependent routing information in the network – e.g., main-
taining appropriate MPLS labels. Since overheads associated with such explicit routing are a
concern, e.g., maintenence of MPLS labels requires non-negligible signaling among routers,
shared trees are deemed to be advantageous [5].

Provisioning VPNs. To determine the resources that need to be provisioned 1 for a given
routing structure one needs to know whether VPN resource sharing state is available in the
network and have a characterization/specification of the VPN’s traffic. If the network supports
VPN specific state for resource sharing, e.g., RSVP and MPLS labels, then pipes or trees that
traverse a common link can share a capacity reservation on that link. Such sharing is particu-
larly desirable when there are spatio-temporal variations in the VPN’s traffic loads. The degree
to which traffic load patterns are known, and the routing structure selected impact the extent
to which such resource sharing can be exploited. For example, if a detailed traffic characteri-
zation is available (or measured) at each link, and sharing is supported, then resources might
be appropriately provisioned to meet the aggregate VPN traffic demands on each link. By con-
trast if only hose descriptors are available, and no resource sharing is supported, provisioning
is likely to be conservative and more costly. As will be discussed in the sequel, when only hose

1We do not distinguish here between explicit resource provisioning on behalf of a VPN and resources which
are reserved through accounting mechanisms, and against which admission decisions would be made.

descriptors are available and resource sharing is supported for traffic on a shared VPN tree, an
efficient provisioning of resources can be made, see [2, 3]. In summary, various provisioning
problems can be considered, depending on the routing structure, whether resource sharing is
supported, and what is known of the VPN’s traffic loads.

On dynamic resizing. Our discussion assumes that one is provisioning and possibly routing
a VPN based on a prior characterization or constraints on the offered load. Such a character-
ization may be challenging to obtain due to spatio-temporal variations in the loads. For this
reason, dynamic resizing of (possibly shared) VPN resources based on real-time (predictive)
traffic measurements at network resources has been proposed [1]. Note however, that the ad-
ditional efficiencies of resizing can only be reaped if other traffic is present to take advantage
of the time-varying capacity being freed up. In order to admit new VPNs on the network, and
guarantee reasonable QoS one will still need to make offline allocations so as to ensure that
surges in traffic can be met through resizing. Thus, the benefits of resizing depend on the band-
width sharing/scheduling mechanisms being used across VPNs, the availability of ‘best effort’
traffic to use up the time varying capacity being made available, and the ability to perform
aggressive VPN admission decisions. For example, if a work conserving service discipline is
used to share resources across VPNs while ensuring a guaranteed rate to each, then resizing
may not be worthwhile.

Summary of paper. In this paper we focus on the shared tree solution for VPNs, as it ex-
hibits nice properties in terms of reducing the state in the network, facilitating re-routing upon
failure, and enabling spatio-temporal multiplexing on network resources. In � 2 we consider
provisioning of shared trees based on an a-priori characterization of VPN traffic demands. Our
goal is to investigate the spatio-temporal multiplexing gains enabled by shared trees versus the
pipe model. Next, in � 3 we reconsider the results of [3, 2] for routing a shared tree to minimize
the provisioning cost while explicitly accounting for statistical multiplexing. We also consider
the routing and provisioning of a series of shared trees to balance loads on a network. We
argue that because shared trees would typically have high resource requirements on internal
links, load balancing is likely to be more important than the minimizing of provisioning costs.
Finally we conclude with � 4 and � 5 wherein we discuss some extensions to the hose based
VPN service model, and discuss application level multicasting and load balancing over a VPN.

2 Provisioning VPN shared trees

We shall use the following notation to discuss provisioning and routing of shared VPN trees.
The network is modeled as a graph G � N � L � with a set of nodes N and a set of bidirectional links
L � N � N. A VPN corresponds to a set of end-points E � N which are to be interconnected
by a shared tree T on the graph – the tree is specified by a set of bidirectional links T � L �
The removal of any link � n � m ��� l 	 T partitions the tree into two sub-trees and thus the set of
end-points into two sets Ll and Rl respectively. Finally we let cn
m and cm
 n denote the capacity
provisioned on link l ��� n � m � in the directions n to m and m to n respectively.

We let D ��� Di
 j : i � j 	 E � denote the full (possibly unknown) traffic load matrix for the
VPN, where Di
 j denotes the (possibly random) demand from VPN end-point i to j. One can
determine ‘hose’ vectors H in � Hout characterizing the aggregate incoming and outgoing traffic
loads at each of the VPN’s end-points, as H in � DvT and Hout � vD, where v denotes a row
vector with all 1’s. Note that the demands D and associated hose vectors H �� H in, Hout � may
be either random or fixed depending on the type of VPN load characterization or constraints
that are available.

Provisioning a VPN for fixed demands. Suppose VPN loads D correspond to a single fixed
matrix d, e.g., corresponding to the peak (or mean) point-to-point loads on the network. These
might be measured in Erlangs for voice traffic or Mbps for data traffic. In this case the asso-
ciated ingress/egress hose vectors, denoted by hin � hout � capture the aggregate average or peak
offered traffic loads at VPN end-points with the assumption of no losses/blocking. Note that
while each matrix d results in a a unique pair of hose vectors h � � hin � hout � , the converse is not
true. Thus if a VPN tree is provisioned based on h alone, there would be sufficient resources
to support a family of matrices corresponding to all traffic splittings consistent with hose spec-
ifications at the end-points. The basic idea for determining the capacity required on a given
link of a shared VPN tree T is to find the worst case peak (or mean) offered load it could see.
Recall that any link � n � m � � l 	 T partitions the end points into two sets Ll and Rl . Assuming
there are no losses, the peak (or mean) offered load ρn
m across the link, from n to m, is given
by

ρn
m � h � � min
�
∑
i � Ll

hin
i � ∑

j � Rl

hout
j � � (1)

with a similar expression for the offered load ρm
 n in the reverse direction. Eq. 1 corresponds
to the minimum of the maximum incoming load from end-points in Ll and the maximum load
end-points in Rl could sink. Depending on the application, the capacity required at this link
might be ρn
m � h ��� ρm
 n � h � , or might correspond to function of cn
m ��� � of the offered loads in
each direction. These functions would typically be concave reflecting the economies of scale
achieved by increasing the loads on a given resource. Thus the total provisioning cost φT � h �
for a shared VPN tree T with hose load vectors h would be given by

φT � h � � ProvisioningCost � T � h � � ∑
l �
	 n
m ��� T

cn
m � ρn
m � h � �� cm
 n � ρm
 n � h � � � (2)

We note that for concave link provisioning functions the overall function φT is concave. If cn
m
are linear then φT is radially homogenous, i.e., φT � αh � � αφT � h � –scaling of the hose vector
results in a scaling of the provisioning cost.

For example, consider a VPN intended to support IP telephony where the traffic loads at the
hoses have been specified in Erlangs, and are necessarily symmetric, i.e., hin � hout . Quality
of service on such a VPN might be specified in terms of end-to-end call blocking probability
δb and voice quality δv for successful calls. Thus, to assure appropriate quality of service,
sufficient resources would need to be allocated to meet the call blocking constraint and admis-
sion control would need to be conducted to ensure voice quality. To simplify the provisioning
problem one might simply ensure that the call blocking probability on each link is acceptable.
The function cn
m ��� � in this case could be computed based on the inverse Erlang function, an
appropriate allowable call blocking probability per link, and an appropriate packet level multi-
plexing model for voice connections with silence suppression. This function would be concave
and capture, on the one hand spatial multiplexing of resources on link � n � m � , i.e., connections
sharing that link but not the same path, and on the other hand temporal multiplexing of the
resources by active connections.

Provisioning for a distribution of demands. Alternatively D may denote a random matrix
capturing the spatio-temporal variations, i.e., burstiness, in the VPN’s traffic load. In this case
the hose vector H would be random, i.e., a statistical model for the aggregate traffic at the
VPN’s end-points. Provisioning a VPN to satisfy the traffic loads D translates to provisioning
so as to meet a possibly large set of possible load scenarios, while provisioning based on H
alone adds the additional uncertainty associated with the manner in which traffic might be split.

For example, the matrix D might consist of jointly Gaussian random variables with marginals
Di
 j � N � µi
 j � σ2

i
 j � and covariance K 	 i
 j �
 	 k
 l � � Cov � Di
 j � Dk
 l � for all end-point pairs i � j and k � l.
The hose vectors, H � � H in � Hout � are simply linear combinations of elements of D and would
thus also be jointly Gaussian. The variance and covariance terms for the joint distribution of
the hose vectors, would reflect various types of correlations among bursty end-point demands.
For example, positive correlations among demands may reflect bursty traffic associated with
servers, and/or information distribution across VPN end-points. Negative correlations among
demands at a given endpoint might reflect the role of capacity constraints outside the VPN, e.g.,
rate adaptation across such flows. Measuring the statistics of aggregate demands and possibly
even the correlations among them seems reasonable, whence one might ask how these would
impact the overall VPN provisioning costs.

Suppose then, that the loads on a VPN have been modeled as described above, where
the random variables model bandwidth demands in Mbps and the objective is to ensure low
probability of overflow, say δ, on all VPN resources. For purposes of evaluating the impact of
such traffic fluctuations on the provisioning cost we will consider several approaches:

1. customer pipe: use pipe model (routed using shortest hop paths), provision to support mul-
tiplexing within pipes only, i.e., for all endpoint pairs � i � j � , place sufficient capacity c
along their routes such that P � Di
 j � c ��� δ �

2. provider pipe: same as above, but provision each link based on the aggregate load of all
pipes traversing the link to meet the QoS constraint, i.e. allow multiplexing across pipes.

3. shared tree with hose multiplexing: route a shared tree using mean loads as hose descrip-
tors and the algorithm proposed in [2], see � 3. Then determine the peak capacity required
at hoses to meet the QoS requirement, i.e., h � � hin � hout � such that P � H in

i
� hin

i ��� δ and
P � Hout

i
� hout

i ��� δ, for all end-points, then provision the remaining links in the tree
based on h using Eqs. 1 and 2, and cn
m � ρ � � ρ.

4. shared tree with VPN multiplexing: use a shared tree as above, but provision all resources,
i.e., both end points and VPN internal links based on a statistical characterization of loads
offered to each link In this case the offered load at each link l ��� n � m � 	 T in the tree is
assumed to be random and given by ρn
m � min

�
∑i � Ll

H in
i � ∑ j � Rl

Hout
j � � and the capacity

cn
m is computed so that P � ρn
m � cn
m ��� δ � For simplicity, in our experiments we as-
sumed the correlations between H in and Hout were are small, so we assumed the vectors
were independent, however in general such correlations should be accounted for more
carefully.

The results are based on five 30-node topologies generated using ‘pure random model’
where the average degree at each node is 4.0 [10]. VPNs with a given number of end-points
were selected based on selecting random locations on the graph. Provisioning costs were
computed based on the four methods described above using a stringent QoS requirement of
δ � 10 � 6 � A distribution of load matrices associated with D was defined based on Di
 j i.i.d.
Gaussian with a common mean and variance. This induces a distribution on the hose vectors
H � The graph on the left of Fig. 1 exhibits the reduction in provisioning costs relative to the
customer pipe model as the mean and standard deviation of the loads are increased linearly, i.e.,
VPNs seeing increasingly bursty loads. All results are averages over multiple VPN instances.
As can be seen, the provider pipe solution is best, yet in this case the full matrix D has used
in provisioning. The shared tree solutions achieve fairly good performance, i.e., about 25-30%
reduction in capacity. The graph on the right shows the reduction in provisioning cost relative

22

24

26

28

30

32

34

36

38

40

42

10 20 30 40 50 60 70 80 90 100

%
 R

ed
uc

tio
n

in
 P

ro
vi

si
on

in
g

C
os

t o
ve

r
C

us
to

m
er

 P
ip

e

Mean, Std. Dev.

% Reduction in Provisioning Cost vs. Mean = Std. Dev.

Provider Pipe
Shared Tree--VPN Multiplexing
Shared Tree--Hose Multiplexing

0

10

20

30

40

50

60

2 4 6 8 10 12

%
 R

ed
uc

tio
n

in
 P

ro
vi

si
on

in
g

C
os

t o
ve

r
C

us
to

m
er

 P
ip

e

Number of Nodes in VPN

% Reduction in Provisioning Cost vs. Size of VPN

Provider Pipe
Shared Tree--VPN Multiplexing
Shared Tree--Hose Multiplexing

Figure 1: Reduction in provisioning costs for different provisioning styles relative to the cus-
tomer pipe approach.

to the customer pipe model for VPNs including an increasing number of endpoints. As can
be seen again the provider pipe model achieves the best performance. The shared tree options
also achieve fairly consistent gains 20-40% and are fairly close to each other, suggesting that
the temporal multiplexing at realized at the hoses, combined with spatial multiplexing in the
network achieves a fairly good capacity savings.

3 Routing VPNs - minimizing cost or reducing congestion.

As mentioned earlier there are various goals one could set for routing shared trees. In this
section we study two cases: routing to minimize provisioning cost with statistical multiplexing,
e.g., as might be the case for our IP telephony example, and routing to balance loads on the
network. Below we focus on the case where hose parameters are symmetric, which should be
adequate if the asymmetry is not severe. Additional work is underway to consider this in more
details. However, the results of [2, 3] for the asymmetric case when cn
m are linear suggest this
is likely to be difficult.

Routing to minimize provisioning cost - symmetric case. We pose the problem of routing
a shared tree so as to minimize provisioning cost, as in [2, 3], but with the addition of a concave
provisioning function:

Problem 1 Given a network G � N � L � , a set of end-points E � N, and deterministic and symmet-
ric hose descriptors hin � hout , to find a tree T connecting the end-points E which minimizes
the provisioning cost ProvisioningCost � T � h � (See Eq. 2), where cn
m � � � are concave and sym-
metric.

A solution to this problem can be sought as follows. For each node r 	 N, determine the
minimum cost routing for multiple commodities hin

i (� i 	 E) to r the only sink. The cost
in this case is sum of concave functions of the total flow carried on links towards the root.
Note because the cost functions are concave the optimal routing to the sink is necessarily a
tree, i.e., no splitting of flows is desirable, see e.g., [6]. Let T r denote one such tree for the
root r, and RootedCost � T r � the minimal cost of multi-commodity problem associated with r.
Among the � N � trees obtained, one for each possible sink or root r, find one that has a minimal
RootedCost. It can be shown that this tree also minimizes the ProvisioningCost and hence is an
optimal shared tree for Problem 1. A proof of this based on the elegant argument in [2] (for the
case where cn
m ��� � are linear functions) can be found in [7], wherein a simple greedy heuristic
is proposed to obtain quick solution to the multi-commodity problem(s) mentioned above.

Our objective in minimum cost routing with concave link provisioning functions was to
assess the extent to which routing of shared trees might impact and the economies of scale one
can achieve. Due to space constraints we have not included these results but we summarize
their qualitative characteristics. The cost savings achieved from a routing that is sensitive to
statistical multiplexing gains were found to be highest for VPNs with ‘moderate’ numbers of
end points [7]. In retrospect, this is not surprising, since VPNs with moderate numbers of nodes
provide opportunities for careful routing to increase statistical multiplexing without significant
overheads versus VPNs with small numbers of end-points. By contrast, for VPNs with large
numbers of end-points, the gain was not significant relative to the large number of links needed
to realize the connectivity.

Online routing for shared VPN trees. If the provisioning cost of a VPN translates to a
service cost, then minimizing the provisioning cost may be desirable from the customer’s point
of view. However the provider may have other concerns. Indeed, a service provider will
want to overlay various VPNs on his network. Thus a good VPN routing, from the provider’s
perspective, is one that allows as many of a sequence of VPN requests to be admitted. Moreover
it would be preferable not to require re-routing, even if the customers subsequently increase
their demands, i.e., renegotiate their hose parameters. As such one might ask how to route a
sequence of shared-tree VPN requests so that the lifetime of these decisions is extended as long
as possible.

Online routing of connection requests is hard but well studied, see e.g., [8]. To see how this
would work for routing shared trees, we propose two simple heuristics and make no effort to
prove (competitive) optimality. In particular for each request to route a new VPN, we determine
the minimum RootedCost tree over all possible roots, but this time with link costs that are
convex functions of the residual capacity on each link. Specifically we considered two such
cost functions. The first was 1 � rn
m where rn
m denotes the capacity that has not been allocated
on link � n � m � � 2 Thus finding trees that minimize the overall cost of this form will tend to avoid
links that are congested. The second link cost function we considered was vα

n
m � rn
m where
vn
m denotes the number of VPNs that are currently flowing through link � n � m � and α � 0. The
rationale for using this cost function was that a link with a high residual bandwidth but which
already has a large number of VPNs going through it should be deemed congested, particularly
when VPN demands are allowed to grow. Our experiments bear this out.

We conducted a fairly extensive set of experiments to evaluate routing of multiple shared
VPNs one of which is described below, see [7] for details. The results are based on the same
topologies considered earlier. We generated a sequence of VPN requests, each corresponding to
either a new VPN or growth in load in a current VPN. We varied γ the probability that a request
corresponds to a new VPN from 0 � 1 to 0 � 9. For simplicity each VPN had five randomly selected
end-points, and loads were normalized so that the load associated with a growth in demand in
an old VPN was commensurate with the load associated with a new VPN. As our performance
metric we used the lifetime of the decisions, which we define as the total number of requests
that were served before a request had to be denied, or VPNs would need to be rerouted. Traffic
on each new VPN was symmetric with a load uniformly distributed in [10,30] with mean 20
Mbps for each hose. Growth in demands for an old VPN, corresponded to incrementing all
hoses by random amount which is uniformly distributed in [10,30] with mean 20 Mbps. The
capacity of the network links was 1 Gbps. We compared several routing algorithms with respect
to the average lifetime they achieved over 50 different request sequences with varying γ. The

2In fact our heuristic for finding minimum RootedCost trees, attempts to minimize this congestion cost after
the new VPN is routed.

0 20 40 60 80 100
−40

−30

−20

−10

0

10

20

% Steps corresponding to New VPNs [%]
%

 R
el

at
iv

e
Im

pr
ov

em
en

t i
n

A
vg

 L
ife

tim
e

[%
]

Min Hops
1/R
n0.5/R
n/R
n2.0/R

Figure 2: Lifetime referred to 1 � r routing strategy vs percent new VPNs per step.

routing algorithms that were compared are the minimum provisioning cost routing discussed
earlier, routing based on 1 � rn
m (denoted 1/R), and based on vα

n
m � rn
m with α � 0 � 5 � 1 and 2
as described above. Figure 2 shows the performance improvement or degradation versus the
performance achieved by our baseline congestion dependent policy, in this case the 1 � R policy.
For this experiment, the minimum provisioning cost routing takes a penalty of 10-40% which is
increasing with the fraction of new VPNs per step. The routing policies that are sensitive to the
number of VPNs that have been routed on a given link proved to be effective only if there was
a balance between new VPNs and VPN growth, i.e., γ � 0 � 5 � When this was the case increasing
α to 2 provided a 15% improvement over the 1 � R scheme. In retrospect this makes sense, as
routing in a manner that is sensitive to future growth in VPN loads should work best when a
significant fraction of such growths, yet also a significant number of requests correspond to
growths in loads and there are a significant number of routing decisions to make, i.e., γ � 0 � 5
is a balance between these two objectives.

4 Extending the hose service model - cutset and multi-class
constraints.

In practice a vector h of hose descriptors might reflect contracts between the service provider
and the VPN customer. A service contract specifies a distributed set of interfaces between
the customer and the provider, i.e., how much traffic can enter and leave the network at each
interface. Such contract would presumably be policed, and leading to excess traffic to be
discarded or tagged for potential discarding elsewhere. The provider would presumably make
a commitment to deliver all traffic conforming to the hose descriptors, and possibly delivering
excess traffic if extra capacity is available in the network.

One problem with the shared tree solution is that it may require the allocation of a large
amount of bandwidth in the ‘center’ of the tree. For example, in the worst case a link may need
to be provisioned to meet about half the sum of the hose bandwidth agreements. For some
VPNs this might be quite large, requiring the service provider to allocate a significant amount
of bandwidth on a given resource, both to support the VPN and its restoration upon failure. A
simple solution is to extend the service model to allow VPN customers or service providers to
specify load constraints across specific (say transatlantic) links, each being taken as a ‘virtual
hose’, and route the remaining traffic using the algorithms discussed previously.

Another useful extension to the VPN hose service model would be to allow specification of
hose constraints for multiple traffic classes, i.e., a set of vectors hc � c 	 C � Once again, it may
still be of interest to route the traffic on a common shared tree T . Provisioning T to satisfy

multi-class constraints is a straightforward extension of Eq. 1 and 2, performed on a per class
basis. However, determining a minimum cost tree to be shared by multiple classes appears to
be difficult, yet it has some similarities with the asymmetric case considered in [2, 3]. One
exception is the case where cn
m are linear and the hose vectors are colinear, in which case the
minimum provisioning cost routing algorithm discussed above would be optimal for all classes.

5 Hose based VPN Service Model- A customer’s perspective.

In addition to providing peer-to-peer connectivity for various types of traffic among end-points,
VPNs might be used to multicast and cache large data files. If the VPN provider does not
support network level multicasting, as is the case today, the VPN customer will need to resort
to realizing multicasting himself. When this is the case, an attempt can be made to balance the
load in a manner that is consistent with the endpoint hose parameters, and so as to minimize
overall delays. Thus we conclude this paper by studying an example of how the customer might
change the loads offered to a VPN given the hose parameters he has negotiated.

Consider a large file of size F to be distributed among a set of n end-points E ��� 1 � 2 � � � � n � .
Suppose without loss of generality that endpoint 1 is the originator of the file, and for simplicity
that each endpoint i 	 E has a symmetric hose constraint hi � hin

i � hout
i � A customer has several

options to distribute such a file. The first is to transmit the file individually to each of the n � 1
recipients. Since its hose constraint is h1 in the best case, i.e., no other traffic in the network,
this would requiring transmitting � n � 1 � F units of data, for a duration of time � n � 1 � F � h1

before all end points would approximately have received the file. In addition to the potentially
high delay, this approach imposes a large and sustained load on endpoint 1’s hose. Compare
with the case in which the network supports network layer multicast. In this case only F data
units would flow through the hose and the minimum time would be F � h1. What other options
does the application have?

One alterative is to resort to relaying the file or subfiles. The benefits here can be both in
terms of distributing the ingress load across other endpoint hoses, which might be beneficial
from a congestion or load balancing point of view, while also reducing delays. Consider the
simple case where the file is forwarded from one endpoint to another, e.g., from 1 to 2, 2 to 3,
until n � 1 forwards the file to endpoint n. In this case each endpoint hose would see F units
(both in and out), and the best case delay would be F ∑n

i � 1 1 � hi if the file needs to be completely
received prior to transmission. We shall refer to this as forwarding. Alternatively if data is
relayed by end-points as it is received, the best case delay would be F � min

�
hi � i � 1 � � � � n � �

Note that the ingress load to the VPN has been distributed equally among all hose end-points.
Note also that if hose constraints are equal, then the delay achieved by relaying is essentially
that of network level multicasting. If there are unequal hose constraints then the overall transfer
delay is dictated by the bottleneck hose.

A further alternative is to consider splitting the file into n � 1 sub files, each with a size
proportional to the hose constraint associated with the endpoint that will serve as its relay, i.e.,
the size of the subfile sent to hoses i � 2 � � � � n would be given by fi � hi

∑n
j � 2 h j F � Suppose further

that the data originator initiates transmission of the subfiles to each endpoint concurrently and
sends at rates proportional to their sizes, whence the reception rate to node i would be ri �

hi
∑n

j � 2 h j h0 � In turn node i could relay the subfile to the remaining n � 2 nodes through its hose

with capacity hi. Assuming full and fair use of the hose capacity the relay node i could achieve
a rate of hi � � n � 2 � to each subsequent endpoint. If the condition

ri � hi

∑n
j � 2 h j

h1 �
hi

n � 2 � h1 �
∑n

j � 2 h j

n � 2

is satisfied then the ideal overall delay would be F � h1, i.e., that achieved by network level mul-
ticasting. In particular this would allow optimization of performance when there is heterogene-
ity in the hose parameters at each endpoint, yet one wishes to achieve the optimal performance
allowable given the sender’s endpoint. Note however that loads have been distributed in a dif-
ferent manner for this case, each relay node would see F units of data on its egress hose, and
2 fi units of data on its ingress hose – the congestion incurred by each endpoint is proportional
to the hoses size, a reasonable criterion for balancing the loads on a shared VPN.

The key idea here is that in addition to the service provider’s point of view on provisioning
and routing VPNs we have discussed earlier, the customer may want to use VPN applications
which are sensitive to either the loads on the VPN or the service level agreements made with
the provider. Thus for example, in the case of application level multicasting of data files the
customer may have a degree of latitude to balance the loads on the VPN, so as to minimize
interference with ongoing peer-to-peer traffic.

References

[1] N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.K. Ramakrishnan, and J. Merwe, A
Flexible Model for Resource Management in Virtual Private Networks, Proceedings of
ACM SIGCOMM 1999, September, 1999.

[2] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, Provisioning a virtual private
network: a network design problem for multicommodity flow, Proceedings of ACM STOC
2001, pp. 389-398, July, 2001.

[3] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener, Algorithms for Provisioning Virtual
Private Networks in the Hose Model, Proceedings of ACM SIGCOMM 2001, August,
2001.

[4] G. F. Italiano, R. Rastogi, B. Yener, Restoration Algorithms for Virtual Private Networks
in the Hose Model, IEEE INFOCOM, 2002.

[5] Anupam Gupta, Amit Kumar, Rajeev Rastogi, Traveling with a Pez Dispenser (Or, Routing
Issues in MPLS), Proc. 42nd IEEE Symposium on Foundations of Computer Science,
2001.

[6] D. Karger and M. Minkoff, Building Steiner trees with incomplete global knowledge,
Proceedings of 41st IEEE FOCS, 2000.

[7] S. Park, Traffic Engineering in Multi-service Networks : Routing, Flow Control and Pro-
visioning Perspectives, Dissertation, the University of Texas at Austin, 2002.

[8] S. A. Plotkin, Competitive Routing of Virtual Circuits in ATM Networks, IEEE Journal of
Selected Areas in Communications, Vol 13, No 6, pp.1128-1136, 1995.

[9] R.L. Easton, P.T. Hutchinson, R.W. Moncello, R.W. Muise, TASI-E communications sys-
tem, IEEE Trans. Commun., pp. 803-807, 1982.

[10] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, How to Model an Internetwork, IEEE
Infocom, vol.2, pp. 594-602, 1996.

